All functions

CIBER() binaryCIBER() detStructCIBER()

Confidence Interval-Based Estimation of Relevance (CIBER)

CIBERlite()

CIBERlite

abcd() print(<abcdiagram>)

Acyclic Behavior Change Diagram

abcd_specs_complete abcd_specs_without_conditions abcd_specs_single_po_without_conditions abcd_specification_example_xtc abcd_specs_dutch_xtc abcd_specification_empty

Simple example datasets for ABCDs

apply_graph_theme()

Apply multiple DiagrammeR global graph attributes

cat0()

Concatenate to screen without spaces

complecs() print(<complecs>) print(<complecs>)

Create a COMPLECS graph

complecs_to_precede()

Represent a COMPLECS specification as a PRECEDE model

dMCD() print(<dMCD>)

Estimate Cohen's d corresponding to a Meaningful Change Definition

detStructAddVarLabels() detStructAddVarNames() detStructComputeProducts() detStructComputeScales()

Functions to preprocess determinant structures

determinantStructure() determinantVar() subdeterminants() subdeterminantProducts() plot(<determinantStructure>) print(<determinantStructure>)

Determinant Structure specification

lm_rSq_ci()

Obtaining an R squared confidence interval estimate for an lm regression

nnc() print(<nnc>)

Numbers Needed for Change

convert.threshold.to.er() convert.er.to.threshold() erDataSeq() ggNNC()

Visualising Numbers Needed for Change

opts

Options for the behaviorchange package

BBC_pp15.1 BBC_pp16.1 BBC_pp17.1 BBC_pp18.1

Subsets of Party Panel datasets

pies()

Practically Important Effect Sizes

determinant_selection_table() determinantSelectionTable_partial() knit_print(<determinantSelectionTable>) print(<determinantSelectionTable>) potential_for_change_index() room_for_improvement()

Potential for Change Index and the Determinant Selection Table

repeatStr()

Repeat a string a number of times

vecTxt() vecTxtQ()

Easily parse a vector into a character value

wrapVector()

Wrap all elements in a vector